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Stochastic Processes

Definition
A stochastic process (or random process) is the time evolution of a
random variable.

is very important both in mathematical theory and its applications in
engineering, economics, Biology, Physics, Chemistry, ecology and etc.
It is used to model a large number of various phenomena where the
quantity of interest varies discretely or continuously through time in a
non-predictable fashion. e.g, noisy phenomena, fluctuation, and
probabilistic behavior
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Properties

Stationarity: Statistical properties are constant over time shifts.
Filtration: Represents the flow of information available over time.
Modification: Two processes agreeing at any single time point with
probability 1.
Indistinguishable: Two processes having identical entire sample paths
with probability 1.
Separability: Properties determined by a countable dense subset of
time points.
Independence: Knowing one process gives no information about the
other.
Uncorrelatedness: Zero cross-covariance between the processes for
all time pairs.
Orthogonality: Zero cross-correlation between the processes for all
time pairs
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Properties (2)

Markovianity:The future evolution of the process depends only on its
current state, not on its entire past history.
Ergodicity:Time averages calculated along a single, long sample path
converge to the ensemble averages Gaussianity
Gaussianity: Any finite collection of random variables from the
process follows a multivariate Gaussian (normal) distribution
Martingale Property: The conditional expectation of the future
value, given the history up to the present, is equal to the present value.
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Stochastic Processes Types

Bernoulli Process: a sequence of independent and identically distributed
(iid) random variables, where each random variable takes either the value
one or zero

Poisson Process: .

Wiener Process:

Gaussian Processes:

Martingale Processes:

Lévy process

renewal processes

branching processes
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Stochastic Processes Modelling

p(x3, t3|x1, t1) =

∫ ∞

−∞
p(x3, t3|x2, t2) p(x2, t2|x1, t1) dx2 (1)

dPn(t)

dt
=

∑
m ̸=n

[WmnPm(t)−WnmPn(t)] (2)

∂P(x , t)

∂t
= − ∂

∂x
[A(x , t)P(x , t)] +

∂2

∂x2 [D(x , t)P(x , t)] (3)

dx(t)

dt
= v(t) (4)

m
dv(t)

dt
= −ζv(t) + F (x(t), t) + ξ(t) (5)
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Fractional Calculus

Figure: A fractional Derivative ?
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Definition
fractional derivative is a generalization of the familiar concept of
differentiation to non-integer orders. α or a transformation from space to
another space

Memory Effects: Systems where the future state depends on the entire
history, not just the present (non-Markovian).

Non-locality: Interactions or transport that are not point-like but depend
on conditions in a surrounding region.

Anomalous Scaling: Processes where variance doesn’t scale linearly with
time (⟨x2⟩ ∼ tα, α ̸= 1). Common in complex, heterogeneous, or crowded
media.

Power-law Behavior: Capturing phenomena exhibiting power-law
frequency or time dependencies (e.g., viscoelastic materials )

MAHMOUD EMADELDIN MAHMOUD (Mansoura University)Stochastic Processes, Fractional Calculus & PlasmaApril 24, 2025 12 / 29



Riemann-Liouville (RL) Fractional Integral
For α > 0, the RL fractional integral of order α is:

aI
α
t f (t) =

1
Γ(α)

∫ t

a
(t − τ)α−1f (τ) dτ

where Γ(α) is the Gamma function. Captures weighted history of f (t).

Riemann-Liouville (RL) Fractional Derivative
For n − 1 < α < n,

aD
α
t f (t) =

dn

dtn
(
aI

n−α
t f (t)

)
=

1
Γ(n − α)

dn

dtn

∫ t

a
(t − τ)n−α−1f (τ) dτ
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Properties

Linearity: Fractional operators are linear.

Non-locality / Memory: The value Dαf (t) depends on f (τ) for
τ ∈ [a, t].

Composition Law: Generally DαDβf ̸= Dα+βf

Laplace Transform (Caputo, a = 0): For n − 1 < α ≤ n,

L{C0 Dα
t f (t); s} = sαF (s)−

n−1∑
k=0

sα−1−k f (k)(0+)
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Applications

Physics: Viscoelasticity, anomalous diffusion, chaos theory, wave
propagation in complex media.

Engineering: Control theory (designing controllers for systems with
memory, potentially leading to better performance),

signal processing:(filtering, modeling 1/f noise),

bioengineering:(modeling biological tissues, drug delivery).

Finance: Modeling long-range dependence in financial markets (e.g.,
volatility clustering).

Biology: Modeling dynamics in biological systems that exhibit memory,
like cell membrane mechanics or population dynamics.
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Fractional Calculus in Plasma: Anomalous Transport
Models of Energetic Particles In Space Plasma

Particle transport in turbulent magnetic fields in space plasmas is
considered to be subdiffusive perpendicular to the mean magnetic field.

The evidence for that is the data collected by spacecraft (e.g., Ulysses and
Voyager) which manifest that the transport of energetic particles in the
turbulent heliospheric medium can indeed be super-diffusive

Some endeavors to understand the energetic particle transport in the
cosmos consider the Langevin equation [?, ?] for the coordinate z(t)

dv

dt
= −ηv +

F (z)

m
+ ξ(t),

dz

dt
= v . (6)

∂W (z , v , t)

∂t
=

[
−v

∂

∂z
+

∂

∂v

(
ηv − F (z)

m

)
+

ηkBT

m

∂2

∂v2

]
W (z , v , t).

(7)
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after some assumption it becomes

∂

∂t
f (v , t) = η

∂

∂v
(vf (v , t)) + A

∂2

∂v2 f (v , t), (8)

in order to investigate solutions describing the sub-diffusive and
super-diffusive behaviors relevant for the propagation of energetic particles
in space plasmas, we start by considering the space-time fractional
force-less Fokker–Planck equation in the form:

CDα
t f (v , t) = η

∂

∂v
(vf (v , t)) + A

∂β

∂|v |β
f (v , t), (9)

To solve Eq (9), consider a separation ansatz of the form

f (v , t) = T (t)φ(v). (10)

1
T (t)

CDα
t T (t) =

1
φ(v)

(
η
∂

∂v
(vφ(v)) + A

∂βφ(v)

∂|v |β

)
. (11)

The two sides in Eq. (11) depend on two variables and correspond to a
constant λ. Then,
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CDα
t T (t) = λT (t), (12)

η
∂

∂v
(vφ(v)) + A

∂βφ(v)

∂|v |β
= λφ(v), (13)

and consider the initial values given by

T (0) = 1, Ṫ (0) = 0 (assuming α > 1 if Ṫ is needed). (14)

First, to get the solution of T (t), take the Laplace transform of Eq. (12).
Assuming 0 < α ≤ 1 (so only T (0) is needed):

sαT̃ (s)− sα−1T (0) = λT̃ (s), (15)

Using T (0) = 1:

T̃ (s) =
sα−1

sα − λ
. (16)

Taking the inverse Laplace transform yields

T (t) = Eα(λt
α), (17)
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Taking the Fourier transformation of equation (13), the solution will be an
exp function and we will write in it the fox-H function to obtain the inverse
Fourier of it then the solution which will be

φ(v) = c1
1
|v |

H2,1
3,3

[
βη

A

∣∣∣∣ Aηv
∣∣∣∣β
∣∣∣∣∣ (1, 1), (1, 1), (1 − λ

η ,
β
2 )

(1 − λ
η , β), (1, 1), (1 − λ

2η ,
β
2 )

]
. (18)

so the general solution will be

f (v , t) =
Eα(λt

α)

|v |
H2,1

3,3

[
βη

A

∣∣∣∣ Aηv
∣∣∣∣β
∣∣∣∣∣ (1, 1), (1, 1), (1 − λ

η ,
β
2 )

(1 − λ
η , β), (1, 1), (1 − λ

2η ,
β
2 )

]
., 1 < β ≤ 2

(19)
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Figure: f(v,t)

Figure: Q(v)
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Langevin Equation for Dusty Plasma particle Temperature

A model is developed using the single-particle Langevin equation of motion
to predict a particle temperature T. This temperature is an estimate of the
true particle kinetic temperature. This model neglects microscopic
collective fluctuations in the plasma. Heating is due to a combination of
Brownian interaction with the neutral gas and electrostatic fluctuations,
while cooling is due to neutral gas drag. The calculation of T is performed
in analogy with the standard Langevin treatment for the Brownian motion
of a particle in a viscous medium. The starting point for the calculation is
the single- particle Langevin equation

m
d2x

dt2
= −mω2

0x −mγ
dx

dt
+ ξ(t). (20)
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Our strategy is to solve Eq. (1) for the mean-square velocity<v2>, which
can then be used to compute the temperature, given by

TL = m⟨v2⟩ (21)

First we review the relationship between mean-square quantities,
correlation functions, and power spectra. We define the Fourier transform
pair for velocity as

v(t) =
1
2π

∫ ∞

−∞
v(ω)e−iωtdω,

v(ω) =

∫ ∞

−∞
v(t)e iωtdt. (22)

The velocity autocorrelation function is given by

Cvv (τ) = ⟨v(t)v(t + τ)⟩ = lim
θ→∞

1
θ

∫ θ/2

−θ/2
v(t)v(t + τ)dt. (23)
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The velocity power spectrum Gv (ω) and autocorrelation function are
related by the Wiener-Khintchine relations:

Cvv (τ) =
1
2π

∫ ∞

−∞
Gv (ω)e

−iωτdω,

Gv (ω) =

∫ ∞

−∞
Cvv (τ)e

iωτdτ. (24)

Using v(t) from Eq. (22) in the integral of Eq. (23) and taking the Fourier
transform yields

Gv (ω) = lim
θ→∞

1
θ
|v(ω)|2. (25)

We wish to derive an expression for ⟨v2⟩. This can be written as the
velocity autocorrelation function evaluated at τ = 0.
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Using Eq. (24), ⟨v2⟩ can be expressed in terms of the power spectrum as

⟨v2⟩ = 1
2π

∫ ∞

−∞
Gv (ω)dω. (26)

Now we solve Eq. (20) for the velocity, obtaining

v(ω) = χ(ω)ξ(ω), (27)

where
χ(ω) =

−iω

m(ω2
0 − ω2 + iγω)

(28)

is the response function. Using Eq. (25), the velocity power spectrum is

Gv (ω) = |χ(ω)|2Gξ(ω), (29)
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where
Gξ(ω) = lim

θ→∞

1
θ
|ξ(ω)|2 (30)

is the power spectrum of the fluctuating force. Substituting this result into
Eq. (26) yields the instantaneous mean-square velocity,

⟨v2⟩ = 1
2πm2

∫ ∞

−∞

ω2

(ω2 − ω2
0)

2 + γ2ω2Gξ(ω)dω. (31)

Gξ(ω) = GBr
ξ (ω) + GES

ξ (ω). (32)

In the absence of electrostatic fluctuations (ξES = 0), the problem reduces
to the usual treatment of Brownian motion [?, ?]. The particle
temperature TBr for Brownian motion is obtained from Eq. (31) by
assuming the spectrum is flat, i.e., GBr

ξ (ω) is constant for a frequency ω
ranging from 0 to well above ω0. This yields

TBr =
GBr
ξ (0)
2mγ

. (33)
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In analogy with the analysis for Brownian motion, we may now predict a
temperature for a plasma crystal in the presence of electrostatic
fluctuations. Using Eqs. (21), (31), and (32), the total particle
temperature predicted by the Langevin model is

TL = TBr + TES , (34)

where

TES =
1

2πm

∫ ∞

−∞

ω2

(ω2 − ω2
0)

2 + γ2ω2G
ES
ξ (ω)dω (35)
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5. Conclusion

Stochastic Processes are essential for describing plasma phenomena
where randomness is inherent or emergent:

Collisions, wave-particle interactions, turbulence.

Tools: Fokker-Planck Eq., Langevin Eq., random walk models.

Capture fluctuations, diffusion, stochastic heating/acceleration.

Fractional Calculus provides a powerful mathematical framework for
systems with memory and non-locality:

Particularly relevant for anomalous transport (sub- and superdiffusion) in
turbulent or complex plasmas.

Tools: Fractional kinetic equations (FFPE), fractional transport equations,
fractional wave equations.

Captures power-law behaviors, trapping, long flights, non-local responses.

Both approaches extend classical deterministic and diffusive models,
offering richer descriptions of complex plasma dynamics.

Future Directions: Combining stochastic methods with fractional calculus
(e.g., fractional Langevin equations), data-driven discovery of
fractional/stochastic models from simulation/experiment, rigorous
derivation from underlying physics.

placeholder_fusion_future.jpg

figurePlaceholder: Image representing the complexity

and potential of plasma physics research.
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